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Abstract: The U.S. Air Force has a severe shortage of pilots. The Air Force’s Pilot Training
Next (PTN) program seeks a more efficient pilot-training environment emphasizing the
use of virtual reality flight simulators alongside periodic real aircraft experience. The objec-
tive of the PTN program is to accelerate the training pace and progress in undergraduate
pilot training. Currently, instructor pilots spend excessive time planning and scheduling
flights. This research focuses on methods to autogenerate the planning of in-flight events
using hybrid filtering and deep learning techniques. The resulting approach captures tem-
poral trends of user-specific and program-wide student performance to recommend a fea-
sible set of graded flight events for evaluation in students’ next training exercise to improve
their progress toward fully qualified status.

History: This paper was refereed.
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Introduction
The U.S. Air Force has a serious operational readiness
issue; there are not enough pilots to meet mission de-
mands. At the end of fiscal year 2016, the Air Force’s
total force structure was 1,555 pilots short of require-
ments needed to meet national security demands. Lt.
Gen. Grosso, then-Chief of Staff for Air Force Person-
nel, identified the need for pilot production and the
Air Force’s progressive focus on developing creative,
agile solutions to meet pilot demands (McRae 2017).

Pilot-production processes produce qualified pilots.
This requires that the Air Force provide sufficient
time and realistic training environments for candi-
dates to develop their skills. Currently, undergraduate
pilot training (UPT) provides the Air Force’s training
program for pilots. UPT operates in a three-phase sys-
tem that spans about one year. The first phase intro-
duces students to basic aircraft control and flying with
instruments in an academic environment using mostly
aircraft and simulators to help students gain requisite
flight experience. Phase 2 begins with a series of
basic flight events and transitions into training blocks
focused on formation and navigation flying events.
Daily evaluations are scheduled, conducted, and re-
viewed by an instructor pilot (IP), introducing stu-
dents to legitimate flight hours in a training aircraft.
Phase 3 involves more-specified training tracks in ei-
ther of two other training aircraft. At the end of phase
3, students deemed fully proficient graduate from

UPT and move on to their next duty assignment. That
next phase, not considered in this work, trains the pilot
candidates destined to operate in their newly assigned
aircraft in either the mobility air forces or the combat
air forces (Korger 2019). See Colbath (2020) for a com-
prehensive overview of the Air Force UPT system.

The pilot shortage puts pressure on the pilot-training
program to produce more pilots at an accelerated pace.
However, the required resources are currently not avail-
able to increase pilot production. Innovative training
methods are needed, which led the Air Force to initiate
the Pilot Training Next (PTN) program to provide a
more efficient and personalized pilot-training experi-
ence. PTN emphasizes the use of virtual reality flight
simulators alongside periodic real aircraft experience to
progress pilot-training students to qualified status.

PTN differs from traditional UPT in at least four
ways: immersive technology; more simulator availabil-
ity; a personalized syllabus; and experience in a low-
risk, high-reward environment. Immersive virtual
reality training provides students with training oppor-
tunities at reduced costs compared with training in a
real aircraft by reducing overall strain and time spent
preparing and maintaining aircraft for flight training
events. PTN also provides students with more access
to virtual reality training with flight simulators. Larg-
er, more-realistic simulators are available in the office,
with smaller simulators available at home. More access
to flight simulators allows students to continue

1

INFORMS JOURNAL ON APPLIED ANALYTICS
Articles in Advance, pp. 1–12

ISSN 2644-0865 (print), ISSN 2644-0873 (online)http://pubsonline.informs.org/journal/inte

November 16, 2021



practicing beyond daily duty hours and gives students
more access to training, regardless of external factors
such as weather, time of day, or aircraft availability.
The use of the simulators to gain proficiency also re-
duces the dependency of the students having an IP
available to guide them. The PTN training schedule fo-
cuses on particular pilot-training student competencies
and gives students the opportunity to advance in
training at their own pace. The first PTN graduating
class prepared pilots in approximately 50% less time
than UPT (i.e., six months versus 12 months).

A drawback to the PTN individualized training sys-
tem is that IPs spend hours planning the training
events. An automated flight-planning recommender
system would alleviate this administrative workload
and is a key component of the PTN program. The ini-
tiative is called the AutoGradebook. However, unfor-
tunately for the AutoGradebook initiative, there are
no recommender systems for pilot-training applica-
tions; thus, the research presented in this paper
presents a first-ever instance of such a system.

This paper presents the initial recommender system
conceptualized, prototyped, tested, and transitioned
to the PTN program. The research leading to the rec-
ommender system also provided recommendations
to zimprove data-collection methods and student-
evaluation metrics.

Background and Literature Search
Recommender systems are not new. Most people in-
teract with them regularly, particularly during an in-
ternet session. This section introduces recommender
systems, some of their applications in research and in-
dustry, some common recommendation-generation
approaches, and complications associated with imple-
menting more-personalized recommender systems.

Some History on Recommender Systems
Good decision-making approaches help explore all
options available. However, exploring all options be-
comes increasingly difficult as systems grow in size,
complexity, and/or influence. Historically, peer and
expert recommendations help to simplify these larger
decision-making scenarios. As experts or decision
makers seek more-personalized recommendations, so-
cial methods of acquiring information cannot always
provide sufficient advice. Computer-based recom-
mendation systems introduce the ability to obtain
more-specified information or advice for a decision
maker’s interests (Ekstrand et al. 2011).

As computer-based recommendation systems be-
come standard practice in decision support, automat-
ed recommender systems will become more common.
Early automated recommender systems depended
on hard-coded, user-provided specifications to filter

through possible options and make suggestions. Today,
many online recommender systems do not even require
user input to generate recommendations. Instead, mod-
ern recommender systems often employ automatically
recorded data from user activity to generate effective
suggestions (Ekstrand et al. 2011). In fact, effective rec-
ommender systems have become essential to the suc-
cess of major e-commerce companies, such as Amazon
and Netflix (Koren et al. 2009).

Common Recommendation-generation
Approaches
Two of the most common personalized methods
for generating user recommendations are collabora-
tive filtering and content-based filtering.

Collaborative-filtering methods assume that a group
of users with highly correlated behavior will have sim-
ilar preferences. Active users deemed similar to such
groups are considered members to provide a reason-
able prediction of their preferences (Ekstrand et al.
2011). An early automated collaborative-filtering algo-
rithm is the k-nearest-neighbor (k-NN) collaborative-
filtering technique by Miller (1995), whereas two of the
better-performing methods of collaborative filtering
are latent factor models and neighborhood models
(Koren 2008).

Item-based collaborative filtering relies on similari-
ties between rating patterns of items rather than user
behavior (Ekstrand et al. 2011). Companies that sell
consumer goods, such as Amazon, often use item-
based collaborative filtering to advertise goods that
are predicted to meet customer needs (Linden et al.
2003). Netflix, and other companies looking to provide
entertainment services, tends to use hybrid approaches
of item-based and k-NNmethods to capture personali-
ties of consumers rather than the functionality of a spe-
cific item (Koren et al. 2009).

Content-based filtering systems produce recom-
mendations based on items previously preferred by
the user (Ekstrand et al. 2011). Multivariate techni-
ques, such as Bayesian classifiers, cluster analysis,
decision trees, and artificial neural networks, are
examples of methods used for such user profiling
(Sanghavi et al. 2014). Pandora, an online music-
streaming company, has had success applying a
content-based filtering algorithm to recommend new
music to users (Koren et al. 2009).

Ensemble modeling employs multiple modeling ap-
proaches applied to a common problem to produce a
solution to that problem. Ensemble modeling over-
comes limitations associated with any particular
modeling approach when applied to problems of in-
terest. Not surprisingly, in machine learning, an en-
semble of models generally outperforms individual
models. Hybrid filtering is an approach that employs
an ensemble approach via preliminary cascading
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techniques to combine model results (Sanghavi et al.
2014). See Ricci et al. (2011) for an in-depth overview
of such recommendation systems and methods.

Deep learning models (i.e., multilayer artificial neu-
ral networks) are widely discussed because of their
ability to learn and exploit the unknown structures
within data. The various types of neural network
model architectures that are suitable for different rec-
ommendation tasks are viewed as neural building
blocks for complex models. Deep neural networks are
composed of multiple neural building blocks that
combine to form one functioning model. These deep
learning models can model vast amounts of complex
data, providing an additional advantage for content-
based recommendation tasks.

The PTN recommender defined and prototyped in
this work uses the temporally ordered sequences of
flight events found in the exercise plans for each stu-
dent produced throughout pilot training to produce
legitimate recommendations for the flight events eval-
uated in upcoming exercises. A deep learning model
structure that has proven successful in capturing tem-
poral data trends for prediction purposes is the long
short-term memory recurrent neural network (LSTM
RNN) (Xie and Wang 2018). The LSTM RNN algo-
rithm is used in this work to generate an initial set of
events for the next training exercise for an individual
pilot candidate.

Potential Complications of Personalized
Recommendations
Personalizing recommender systems introduces com-
plications. A highly personalized recommendation
system can become inconsistent when placed in gener-
al use. In a pilot-training recommender system, such
inconsistencies can introduce overall inefficiencies
when student performance varies from average stu-
dent performance. Students whose performance dif-
fers from the average performance are labeled “black
sheep,” whereas an average performer is the “white
sheep.” Further complicating the pilot-training system
is that both types of performers can interchange roles,
owing to training-performance lapses or advances.
Recommender systems struggle with the black-sheep
users because of their differences (Srivastava et al.
2019). A PTN recommender system should focus on
moving the poor-performing black sheep toward the
better performer. This movement of performance to-
ward the better performer is a novel aspect of the
recommender system described in this paper and im-
plemented in the collaborative filtering component of
the hybrid algorithm developed.

Two final complications are briefly noted. First,
data formats and content can change, thus degrading
recommender-system performance. Second, measur-
ing recommender-system performance is hard when

the number of possibly correct recommendations is
not unique (Ekstrand et al. 2011). We address both of
these final complications in our model development
and testing effort.

Data Description, Collection,
and Preparation
The data used for this work came from the first PTN
class. The raw data set consists of the scores received
on every graded event performed during each train-
ing exercise for the 19 students in the original PTN
class. Those scores are well defined and summarized
in Table 1. Ultimately, 18 students were used, as one
trainee left the program. The data include information
on 128 individual flight events executed during pilot
training. Training events fall into 10 different event
categories: basic, patterns, contact, instruments, basic
formations, tactical formations, low-level, four-ship
formations, combat air forces introduction, and mobil-
ity air forces introduction, as listed in Table 2. Only a
subset of all possible flight events are performed
during each training exercise. Each student has an
identification number, and each record in the data
represents the information for a single training exer-
cise for a given student.

The data naturally required some cleaning, which is
not detailed here. The data are also limited in some re-
spects, such as a lack of weather information, start
times, and individual event-ordering details. These
limitations were noted in data-engineering recom-
mendations provided to the research customer, but
these did not impact the recommender-system devel-
opment effort.

Exploratory Data Analysis
PTN features tailored training programs. The first
PTN class of 18 graduated students required a mini-
mum of 60 days, a maximum of 100 days, and an av-
erage of 83 days to complete the training. This range
in the training length shows individualization of the
training programs, but program individualization im-
pacts IP efforts. The IPs spend a significant amount of
time creating the tailored sequence of events for each
pilot trainee’s next exercise, choosing among the 128
possible training events. IPs must consider trainee

Table 1. Point Allocation per Event Graded Evaluation

Recorded grade Definition Point equivalent

E Excellent 4
G Good 3
F Fair 2
U Unsatisfactory 1
NG No grade 0
N/A No recorded data 0
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event proficiencies and the introduction of new events
to build the trainee’s breadth of experience. An initial
data analysis provides useful insights for defining the
PTN recommender system. In particular, occurrence
distributions of each event provide insight into when
events are typically scheduled during the training
campaign for each student and are used to define the
event scores used in the collaborative filtering compo-
nent of the algorithm described below. Details of the
analysis are available in Forrest (2020).

Table 3 depicts the two basic training groupings un-
covered. Events in group A are introduced early;
events in group B begin appearing after about training
exercise 40. Table 4 breaks out the occurrence distribu-
tion of each event. The key takeaways from these data
are as follows:

• The training features depth of event coverage to
achieve proficiency.

• The training features breadth to cover all the
events.

• There are clearly timing issues regarding the repeti-
tion of trained events.

• There is the introduction of new, as-yet-untrained
events.

Not detailed here, but available in Forrest (2020), is
the distributional information pertaining to the

frequency of event selection based on the particular
time in the training program (i.e., the likelihood of the
event occurring in a particular exercise), as implied by
the data in Table 4.

Legacy and Proposed Progress Score
All PTN students progress at their own pace. Training
focuses on proficiency depth as well as skills breadth.
The current overall progress metric is the maneuver
item file (MIF). Events are graded on the zero-
through-four ordinal scoring scale, corresponding to
“No Grade” through “Excellent,” highlighted in Table 1.
The MIF is the cumulation of the maximum recorded
scores over all the events available.

Figure 1 shows the cumulative MIF for the first
PTN class (excluding combat air force and mobility
air force events, which may not be common to all
completing students). The standard MIF threshold,
represented by the thick dashed line, is the maximum
cumulative MIF score a student can achieve. The level
area early in the training campaign seems to indicate
progress stagnation, but is actually a period of increas-
ing breadth of skills. The MIF does not adequately
account for breadth and only focuses on proficiency
levels. Such a measure is not particularly conducive to
building a recommender system.

Table 2. List of Graded Flight Events by Event Category Provided by the PTN Program

Event categories Graded flight events

Basic Mission Analysis/Products, Ground Ops, Takeoff, Departure, Basic Aircraft Control, Cross-Check, Enroute
Descent/Recovery, Inflight Checks, Inflight Planning, Clearing/Visual Lookout, Communication, Risk
Mgmt/Decision Making, Situational Awareness, Task Management, Emergency Procedures, General
Knowledge

Patterns Overhead/Closed Pattern, Visual St-In, Landing, No-Flap Landing, Go-Around, Emergency Landing Pattern
Contact G-Awareness, TP Stalls, Slow Flight, Power On Stalls, Contact Recoveries, Spin Recovery, Aileron Roll, Barrel

Roll, Pitchback/Sliceback, Cloverleaf, Cuban Eight, Immelmann,Lazy Eight, Loop, Split S
Instrument Vertical S, Unusual Attitudes, Steep Turns, Intercept/Maintain Arc, Fix to Fix, Holding, Full Procedure

Approach, Non-Precision Final, Precision Final, Circling Approach, Missed Approach, Night Landing
Basic formation Wing Takeoff, Interval Takeoff, Instrument Trail, G-Warmup/Awareness, Lead Platform, Pitchout (Both),

Fingertip (Wing), Route (Wing), Fighting Wing (Wing), Straight Ahead Rejoin, Turning Rejoin, Overshoot,
Echelon (Wing), Breakout (Wing), Lost Wingman (Both), Extended Trail (Wing), Position Change,
Formation Approach (Both), Formation Landing (Both), Battle Damage Check, Flt Integrity/Wingman
Consideration

Tactical formation Delay 90, Delay 45, Hook Turn, Shackle, Cross Turn, Fluid Turn, Tactical Rejoins, Fluid Maneuvering, Tac
Initial

Low-level Course Mx, Course Entry, Time Control, Altitude Control, Checkpoint ID, LL GPS Integration, Tactical
Maneuvering, LL Lead Change

4-Ship formation Four Ship Admin, Fluid 4, Box Formation, Offset Box, Wall, 4-Ship Fingertip, Straight Ahead Rejoin, Turning
Rejoin

CAF introduction Heat to Guns Setup, Heat to Guns Maneuvering, Fuel Awareness/Management, Advanced Handling, Perch
Setups, Maneuver Selection, Offensive Fighter Mnvr Exec, Defensive Fighter Mnvr Exec, CZ Recognition,
Air to Air Weapons Employ, HA Lead Turn Exercise, HA Butterfly Setups, HA BFM Flt Analysis, SA
Conventional Range, SA Tactical Range Proc, SA Safe-Escape Maneuver, SA Threat Reaction, SA Weapons
Employment, Air to Ground Error Analysis, TACS/JFIRE Procedures, Air to Ground 2-Ship Mutual Supt

MAF introduction Mission Management, VFR Arrival, Tanker Procedures, Reciever Procedures, Airdrop Procedures, Crew
Coordination, Single Engine Approach, Single Engine GA/Missed Appch, A/R Overrun, A/R Breakaway,
FD/AP Operations, FMS Operations

Notes. These 128 events fall into 10 categories. Subsets of each are selected for each pilot-training event. CAF, combat air force; MAF, mobility air
force.
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The Forward Progress Score (FPS) was designed to
better model student progress by incorporating both
depth and breadth aspects of training into a single
metric. Achieving proficiency in each event is as-
sumed as the primary goal for each student. The FPS
uses a percent value of the individual maximum MIF
scores as a variable representing student progress to-
ward proficiency in each event. Applying percentages
of total progress toward a set goal addresses skill
depth in the training campaign toward overall profi-
ciency more appropriately than simply considering re-
corded grades. Additional details on the calculation of
the FPS are contained in Appendix A.

Visuals representing student FPS score over time,
again excluding combat air force and mobility air force
event evaluations, are represented in Figure 2. Unlike
Figures 1, 2 shows a consistent progression of student
performance throughout training, a metric more useful
to building a recommender system. This alternate pro-
gress measure was positively received by the PTN pro-
gram and is being examined for employment.

Defining the PTN Recommender System
The flight-training planning process involves many
aspects. Among them are repetition of tasks to gain
and improve proficiency, the introduction of new
tasks to gain requisite breadth of skills, and the timely
progression toward full qualification. Each training
exercise involves a set of events accommodating these
key aspects of the training. The IP will spend an inor-
dinate amount of time creating each trainee’s se-
quence of events for each exercise.

A guiding principle in the building of the recommend-
er system was that the IP-produced exercise sequence of
events embedded in the PTN data were correct. Thus, an
accurate recommender system should closely match the
IP suggestions. The overall recommender-system ap-
proach is graphically defined in Figure 3 and described
next.

An IP plans a student’s training flight as a sequence
of events. The recommender system needs to generate
such sequences. However, the PTN data set was not
large enough to train the sequence-recommendation
component. Thus, the data for the 18 students, consid-
ering the 128 possible events, over the 60–100 training
exercises available, were presented as sets of events
(versus ordered vectors of events). This expansion of
the data presentation proved sufficient to actually
train the event-sequence-generation component of the
recommender system.

The first component of the hybrid recommender
system produces the initial event set recommended for
the next training exercise. An LSTM RNN is trained to
output an unordered set of events for the next exercise
combined to create the initial exercise plan. Of the 18
student records available, the first four were held out
as test data, with the remaining used as training data.
The training involved leave-one-out cross-validation
to ensure the quality of the model. The data provided
for each student involved the event scores for that stu-
dent over past training, with the scores normalized to
a percentage of the required proficiency level for that
event. The training metric employed used the agree-
ment between the algorithm-recommended set of
events with those suggested by the IP, because the ini-
tial event set suggested should resemble that coming
from the IP. Model training involved 100 iterations,
unless there was a lack of improvement, at which
point the training was terminated. This overall ap-
proach kept with the objective of building a recom-
mender that mimics the work of the IP.

Just using the initial recommended set of events
causes stagnation in pilot student progression. In prac-
tice, training must focus on improving every students’
performance—those weak students who need to im-
prove toward the overall average performance and
stronger students who must continue to improve. A
novel collaborative filtering extension is employed to
achieve improved recommender-system performance.

The collaborative filtering component is a swap
heuristic that replaces events selected by the LSTM
RNN with nonselected events if the swap is deemed
beneficial. This is accomplished by using a measure
associated with each event that helps determine
whether that event will help to improve student
performance.

At each stage of the training campaign, a gold stan-
dard of performance is defined. This is the performance

Table 3. Grouped Basic Formation Events Based on Event
Occurrence Frequencies Shown Here as Group A and
Group B

Group A Group B

Wing Takeoff Interval Takeoff
G-Warmup/Awareness Fighting Wing (Wing)
Lead Platform Instrument Trail
Pitchout (Both) Turning Rejoin
Fingertip (Wing)
Route (Wing)
Straight Ahead Rejoin
Overshoot
Echelon
Breakout (Wing)
Lost Wingman (Both)
Extended Trail (Wing)
Position Change
Formation Approach (Both)
Formation Landing (Both)
Battle Damage Check
Flt Integrity/Wingman Consideration

Note. Events in group A occurred early in a pilot trainee program,
whereas events in group B occurred later in the pilot trainee program.
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Table 4. Statistics for Reaching Proficiency Across Original PTN Class Measured by Training Exercise

Graded event Min Median Mean Max Graded event Min Median Mean Max

Mission Analysis/Products 13 31.5 33 56 Extended Trail (Wing) 56 66 66 77
Ground Ops 14 28 32 64 Position Change 28 51 49 68
Takeoff 1 28.5 28 56 Formation Approach (Both) 54 57.5 58 61
Departure 3 28 29 57 Formation Landing (Both) 49 49 49 49
Basic Aircraft Control 13 36 38 79 Battle Damage Check 45 55 57 72
Cross-Check 19 33 39 86 Flt Integrity/Wingman Consider 31 47.5 49 73
Enroute Descent/Recovery 14 31 33 74 Delay 90 41 52 56 77
Inflight Checks 14 31 32 57 Delay 45 52 61 63 77
Inflight Planning 19 34.5 38 74 Hook Turn 52 57 61 77
Clearing/Visual Lookout 14 30 33 74 Shackle 49 61.5 62 77
Communication 13 29 32 67 Cross Turn 54 59 61 75
Risk Mgmt/Decision Making 12 29 30 53 Fluid Turn 77 77 77 77
Situational Awareness 14 32.5 36 86 Tactical Rejoins 44 61 56 62
Task Management 19 31.5 35 76 Fluid Maneuvering 54 61 61 68
Emergency Procedures 19 31 38 86 Tac Initial 47 53.5 56 69
General Knowledge 19 29 37 79 Course Mx 47 66 65 88
Overhead/Closed Pattern 14 30 30 52 Course Entry 38 55 60 88
Visual St-In 7 32 26 33 Time Control 41 51 54 70
Landing 2 28 27 45 Altitude Control 50 52 60 88
No-Flap Landing 48 58 64 88 Checkpoint ID 51 63 64 88
Go-Around 19 34 36 60 LL GPS Integration 49 58 62 88
Emergency Landing Pattern 11 17 18 31 Tactical Maneuvering 51 66 63 76
G-Awareness 28 32.5 36 57 LL Lead Change 52 67 63 76
TP Stalls 28 30.5 33 45 Four Ship Admin 62 62 62 62
Slow Flight — — — — Fluid 4 56 56 56 56
Power On Stalls 22 33 33 45 Box Formation — — — —
Contact Recoveries 21 30 33 57 Offset Box 62 62 62 62
Spin Recovery 2 7.5 10 36 Wall 70 70 70 70
Aileron Roll 16 28 28 40 4-Ship Fingertip — — — —
Barrel Roll 29 39.5 40 53 4-Ship Straight Ahead Rejoin — — — —
Pitchback/Sliceback 28 28 28 28 4-Ship Turning Rejoin 62 62 62 62
Cloverleaf 13 29.5 30 42 Heat to Guns Setup 65 69 69 73
Cuban Eight 3 32 28 38 Heat to Guns Maneuvering 59 65 66 72
Immelmann 11 32 32 43 Fuel Awareness/Management 59 69 70 81
Lazy Eight 28 40 40 56 Advanced Handling — — — —
Loop 27 31 32 40 Perch Setups 59 65 66 73
Split S 4 37 36 57 Maneuver Selection 61 65 67 73
Vertical S — — — — Offensive Fighter Mnvr Exec 62 66 67 73
Unusual Attitudes 16 19 19 22 Defensive Fighter Mnvr Exec 64 73 73 81
Steep Turns 71 75 75 79 CZ Recognition 65 70 71 78
Intercept/Maintain Arc 31 53 54 84 Air to Air Weapons Employ — — — —
Fix to Fix 4 19 22 61 HA Lead Turn Exercise — — — —
Holding 29 48.5 46 62 HA Butterfly Setups — — — —
Full Procedure Approach 27 37 38 56 HA BFM Flt Analysis 72 74.5 75 79
Non-Precision Final 26 31 36 78 SA Conventional Range — — — —
Precision Final 1 29.5 30 55 SA Tactical Range Proc — — — —
Circling Approach 16 58.5 55 86 SA Safe-Escape Maneuver — — — —
Missed Approach 11 45 45 63 SA Threat Reaction 77 77 80 87
Night Landing 17 37 34 48 SA Weapons Employment 76 85 83 89
Wing Takeoff 14 43 46 75 Air to Ground Error Analysis — — — —
Interval Takeoff 48 59 58 67 TACS/JFIRE Procedures — — — —
Instrument Trail 64 72 72 80 Air to Gnd 2-Ship Mutual Supt — — — —
G-Warmup/Awareness 14 59 58 77 Mission Management 71 85 84 97
Lead Platform 33 48 46 58 VFR Arrival 68 86 80 86
Pitchout (Both) 14 48 42 57 Tanker Procedures — — — —
Fingertip (Wing) 14 54 50 68 Reciever Procedures — — — —
Route (Wing) 42 54 53 72 Airdrop Procedures — — — —
Fighting Wing (Wing) 52 57.5 58 72 Crew Coordination 63 85 80 87
Straight Ahead Rejoin 40 43 50 67 Single Engine Approach — — — —
Turning Rejoin 51 55 57 66 Single Engine GA/Missed Appch — — — —
Overshoot 44 49 49 54 A/R Overrun — — — —
Echelon (Wing) 50 50 50 50 A/R Breakaway — — — —
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level toward which all underperforming students
should gravitate. The gold standard is defined as the
average event scores of the top 10% of performers in
the class. Underperforming pilot trainees need
training plans designed to push them toward the
gold-standard performer. The collaborative filter
does this by considering all possible events and
swapping LSTM RNN-selected events with nonse-
lected events when prudent, as determined by the
calculated event-utility measure.

The individual event fraction (IEF) is the difference
in proficiency between a student’s event score and
that of the gold-standard performer. This score is then
weighted by the likelihood of that event being includ-
ed in the training plan at this point in the training pro-
gram. These likelihoods are based on Table 4 data.
This weighted score is called the event utility. The col-
laborative filter varies in how it handles weak stu-
dents (below the standard) and strong students
(above the standard).

For the weaker students, the collaborative filter
swaps low-utility events in the recommended event
set with higher-scoring events not selected. The num-
ber of swaps is kept to a fraction of the total low-utility
events for that student to maintain an element of con-
sistency in the final training-exercise event set while
still pushing the training toward desired proficiency.

For the stronger students, the collaborative filter
considers event swaps that either further improve stu-
dent performance (achieve a depth of experience) or
add new events (to achieve a breadth of experience).
Once the collaborative filter processing is complete,
the event set for that student is provided as the next
recommended training exercise.

Model Results and Testing
Figures 4 and 5 provide examples of what the recom-
mender system accomplishes. These represent a par-
ticular student with an IP-generated plan, alongside

Table 4. (Continued)

Graded event Min Median Mean Max Graded event Min Median Mean Max

Breakout (Wing) 33 53 53 64 FD/AP Operations — — — —
Lost Wingman (Both) 43 62.5 59 77 FMS Operations 72 72 78 90

Notes. Each exercise entry provides the minimum, median, mean, andmaximum values. These distributional data are used in the recommender
system to produce event utilities, key to the collaborative filtering component of the recommender system.

Figure 1. (Color online) Cumulative Student Performance over Time Using Cumulative MIFMetric for First PTNClass, Exclud-
ing Combat Air Force andMobility Air Force Tracks
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the recommender-system-generated plan for exercises
3 and 21, respectively. For exercise 3, there are two
preceding exercises, and for exercise 21, there are
20 preceding exercises, all of which were manually
IP-generated. These preceding exercises provide the
input event lists and scores used by the recommender
system to generate the initial recommended plan. On
the right of each figure are the IP-generated and rec-
ommender-system-generated listings for exercises 3
and 21. The agreement appears quite adequate. This is

the agreement level examined in the testing of the rec-
ommender system.

The recommender-system evaluation uses two met-
rics, each based on a binary variable, set to zero when
the IP and recommender system disagree on an event
inclusion and one when there is agreement. Testing
loss is the binary cross-entropy measure, whereas test-
ing accuracy is the average value of the binary vari-
able. Note that these are measures compiled by using
the 128 possible events.

Figure 2. (Color online) Cumulative Student Performance over Time Using FPSMetric for First PTN Class, Excluding Combat
Air Force andMobility Air Force Tracks

100

200

300

400

500

20 40 60Training Exercise

MIF Super Score by Training Exercise Excluding MAF and CAF maneuvers
Standard Threshold

Fo
rw

ar
d 

Pr
og

re
ss

 S
co

re

80 1000

Note. The key difference here is the lack of an area of apparent progress stagnation because the FPS metric specifically considers training
breadth.

Figure 3. Overall Sequence of Events for Each Student to Develop the Final Recommended Training Plan

Notes. An initial individualized plan is generated by using a content-based filtering algorithm applied to the student’s past scored events. The
collaborative filtering algorithm then adjusts the initial plan to promote improvement in pilot trainee efficiency and breadth.
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Table 5 depicts the full testing accomplished, exam-
ining results generated for exercises 11, 26, and 51, as
based on 10, 25, and 50 preceding exercises, respec-
tively. Overall, the results are promising, as the rec-
ommender system does well at building each exercise
set, and there does not appear to be much sensitivity
with respect to the number of preceding exercises
required to achieve the results. However, Table 5
does not provide the full temporal picture. Figure 6
plots the testing accuracy metric as a function of

training-exercise number, which represents elapsed
time in PTN. These recommendations involve a pre-
ceding exercise cap of 50, meaning that the algorithm
does not take into account any training that occurred
outside of the 50 most recent exercises. The recom-
mender system performs well early and late in the
training programs, but appears to struggle throughout
the middle of the training programs. An exact ratio-
nale for the behavior, and algorithmic corrections, is
part of ongoing work and extensions as more PTN

Figure 4. IP-Chosen Event Recommendations vs. Model-generated Event Recommendations on Training Exercise 3

Notes. The first two columns are training exercises 1 and 2. These lead to the IP-chosen set of events and the model-generated set of events. No-
tice Go-Around is selected by the IP, but not by the model, whereas Slow Flight is selected by the model, but not by the IP.

Figure 5. IP-Chosen Event Recommendations vs. Model-generated Event Recommendations on Training Exercise 21

Notes. The first four columns are training exercises 1–20. These lead to the IP-chosen set of events and the model-generated set of events. Notice
Vertical S is selected by the IP, but not by themodel, whereas Landing is selected by themodel, but not by the IP.
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data are received. However, one conjecture is that the
dip in performance is due to the introduction of breadth
into the training-event selection process, meaning that
additional work on the algorithm might focus on em-
phasizing the breadth of event selection at some point
estimated as midway through a training program.

Overall, the recommender system generated more
than 300 exercises based on this single PTN data set. The
recommender system produced each recommendation
at an average of 8.14 seconds (standard deviation of 0.10)
compared with the hours that are expected for an IP to
accomplish a similar task. These time savings are impres-
sive, particularly when coupled with the demonstrated
accuracy of this initial recommender system.

Conclusions and Future Work
The Air Force’s PTN program has had success in ef-
fectively shortening the length of UPT campaigns for
pilot-training students. Operational differences from
traditional undergraduate pilot training with the
emphasis of virtual reality flight simulation alongside
periodic real aircraft experience appear to provide
a more efficient pilot-training process. Automating
tedious tasks performed by IPs by using a recom-
mender system provides an opportunity to make the
pilot-training process even more efficient.

A new metric, called the FPS, was developed to bet-
ter track student progress throughout UPT. Unlike
current methods, FPS incorporates both breadth and
depth of student skill advancement. The FPS uses

progress-tracking metrics, such as proficiency of indi-
vidual graded events, quantity of introduced events
and event categories, and proficiency of entire event
categories, to capture the multidimensional aspect of
student advancement through a training campaign.

An initial recommender system employing a hybrid
filtering approach using both content-based and col-
laborative models was shown to accurately generate a
set of appropriate flight events for evaluation in a stu-
dent’s next training exercise. An LSTM RNN was
trained using actual IP recommendations to produce
initial student-specific recommendations. A collabora-
tive filtering component improved this recommended
set. Testing demonstrated the model’s ability to pro-
duce flight-event recommendations, averaging 92%
similarity to actual IP recommendations at a fraction
of the time currently required.

The inherent uniqueness of PTN and the AutoGra-
debook concept open a variety of focus areas for fu-
ture research. Minor parameter tuning was conducted
in this study. As additional classes complete PTN and
the improvements to the data-collection process that
were recommended by this initial study are put into
place, additional model parameters and finer levels of
parameter tuning can be examined. The limited data
available for this initial development effort limited al-
gorithm choices. With more data, set-generation meth-
ods can be examined. The current approach considers
events independently. Future work can define and in-
corporate event linkages and various IP “rules of
thumb” to further improve the recommendations pro-
duced. Trainees can experience proficiency regression,
requiring remedial action in the form of reintroducing
previously trained events. Current research is focused
on methods to identify and recommend rectifying ac-
tions for such training regression. Finally, the current
algorithms focus on pushing event selection toward top

Table 5. Model Testing Results

Sequence length Testing loss Testing accuracy

50 0.2146 0.9145
25 0.2113 0.9170
10 0.2151 0.9136

Figure 6. (Color online) Model Accuracy with Regard to Training Exercise
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Note. AvgAcc, average accuracy; seqLength, sequence length used for training.
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performers. This approach can be reassessed to possibly
employ multiple student standards in the collaborative
filtering component of the recommender system.
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Appendix A. Mathematical Development of
Forward Progress Score

Understanding FPS requires some mathematical structure.
Define the sets STUDENTS of size S as the pilot candi-
dates in the program, EVENTS of size E as the potential
training events, and CAT of size C as the categorical
grouping of events. See Table 2 for the list of sets E and
C. Each student, s ∈ STUDENTS, receives an IEF score:

IEFsi "
MaxScoresi
MaxMIFi

s ∈ STUDENTS; i ∈ EVENTS, (A.1)

where the MaxScoresi is the highest score for student s
on event i, and MaxMIFi is the highest possible score
for event i. These scores are used to obtain the cumu-
lative event points (CEPs) score based on Table A.1.
The CEP is a summation of the points earned by the
student for each event. These values are retained for
each student as CEPs

i .
The FPS for each student, s ∈ STUDENTS, at the end of

training exercise ℓ, is then defined as:

FPSs,ℓ "
∑E

i"1
CEPs

i +
∑C

j"1
SWjIsj +MWjHs

j

[ ]
∀ s ∈ STUDENTS,

(A.2)

where SWj and MWj are the weights of having been
introduced to all events and having achieved profi-
ciency in all events, respectively. The Isj and Hs

j are in-
dicator functions pertaining to whether student s has
been introduced to all events and has achieved profi-
ciency in all events, respectively.

Appendix B. Metrics Used in Evaluation
Let e represent a particular event of interest (of the 128
available). Define te as the binary variable representing IP
selection of the event (value of one for selection), pe as the
binary variable representing the recommender-system se-
lection of the event, and be as the binary variable repre-
senting agreement of the IP and the recommender system
(a value of one when te " pe). Then,

Testing Loss " −1
128

∑128

e"1
telog (pe) + (1 − te) log (1 − pe)
[ ]

,

(B.1)

Testing Accuracy " −1
128

∑128

e"1
be, (B.2)

where the testing loss metric is a commonly used met-
ric known as binary cross-entropy.
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